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The Physiome Project, exemplified by the Cardiac Physiome, is now 10 years old. In
this article, we review past progress and future challenges in developing a quantitative
framework for understanding human physiology that incorporates both genetic inheritance
and environmental influence. Despite the enormity of the challenge, which is certainly greater
than that facing the pioneers of the human genome project 20 years ago, there is reason for
optimism that real and accelerating progress is being made.
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The Physiome Project was formally launched at a satellite
symposium of the International Union of Physiological
Sciences (IUPS) Congress in St Petersburg in 1997. Just
over a decade later, where are we? Are the aims and
principles outlined at that time being fulfilled? In this
article, we address these questions by discussing multiscale
analysis and modularity in biological systems, the various
approaches to mathematical analysis in biology, and
the framework being established by the IUPS Physiome
Project to help with the understanding of complex
physiological systems through the use of biophysically
based mathematical models that link genes to organisms.

Multiscale analysis

One of the central principles is that complex systems like
the heart are inevitably multiscalar, composed of elements
of diverse nature, constructed spatially in a hierarchical
fashion. This requires linking together different types of
modelling at the various levels. It is neither possible nor
explanatory to attempt to model at the organ and system
levels in the same way as at the molecular and cellular
levels. To represent the folding, within microseconds, of
a single protein using quantum mechanical calculations
requires months of computation on the fastest existing
parallel computers (such as IBM’s Blue Gene). It would
require unbelievably large numbers of such computers
(one estimate is 1027; Noble, 2006) to analyse just a
single cell in this degree of detail. Even if we could do
it, we would still need to abstract from the mountain of

computation some explanatory principles of function at
the cellular level. Furthermore, we would be completely
lost within that mountain of data if we did not include
the constraints that the cell as a whole exerts on the
behaviour of its molecules. This is the fundamental reason
for employing the middle-out approach. In multiscalar
systems with feedback and feedforward loops between the
scale levels, there may be no privileged level of causation
(Noble, 2008a).

The impressive developments in epigenetics over the
last decade (Bird, 2007) have reinforced this conclusion by
revealing the nature and extent of some of the molecular
mechanisms by which the higher level constraints are
exerted. In addition to regulation by transcription factors,
the genome is extensively marked by methylation and
binding to histone tails. It is partly through this marking
that a heart cell achieves, with precisely the same genome,
the distinctive pattern of gene expression that makes it a
heart cell rather than, for example, a bone cell or a liver
cell. The marking is transmitted down the cell lines as they
divide to form more cells of the same kind. The feedbacks
between physiological function and gene expression that
must be responsible are still to be discovered. Since
fine gradations of expression underlie important regional
characteristics of cardiac cells, making a pacemaker cell
different from a ventricular cell, and making different
ventricular cells have different repolarization times, this
must be one of the important targets of future work
on the Cardiac Physiome. We need to advance beyond
annotating those gradients of expression to understanding
how they arise during development and how they are
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maintained in the adult. This is one of the ways in
which quantitative physiological analysis will be connected
to theories of development and of evolution. The logic
of these interactions in the adult derives from what
made them important in the process of natural selection.
Such goals of the Physiome Project may lie far in the
future, but they will ultimately be important in deriving
comprehensive theories of the ‘logic of life’.

A second reason why multiscale analysis is essential
is that a goal of systems analysis must be to discover at
which level each function is integrated. Thus, pacemaker
activity is integrated at the cell level; single sinus node
cells show all the necessary feedback loops that are
involved. Below this level, it does not even make sense to
speak of cardiac rhythm. At another level, understanding
fibrillation requires analysis at least at the level of large
volumes of tissue and even of the whole organ. Likewise,
understanding the function of the heart as a mechanical
pump is, in the end, an organ-level property. Another way
of expressing this point is to say that high-level functions
are emergent properties that require integrative analysis
and a systems approach. The word ‘emergent’ is itself
problematic. These properties do not ‘emerge’ blindly
from the molecular events; they were originally guided
by natural selection and have become hard-wired into
the system. Perhaps ‘system properties’ would be a better
description. They exist as a property of the system, not just
of its components.

A third reason why multiscale analysis is necessary is
that there is no other way to circumvent the ‘genetic
differential effect problem’ (Noble, 2008b). This problem
arises because most interventions at the level of genes,
such as gene knockouts and mutations, do not have
phenotypic effects. The system as a whole is very effective
in buffering genetic manipulations at the level of DNA,
through a variety of back-up systems. This is one of the
bases of the robustness of biological systems. Moreover,
when we manipulate a gene, e.g. through a mutation,
even when phenotypic effects do result they reveal simply
the consequences of the difference at the genetic level;
they do not reveal all the effects of that gene that are
common to both the wild and mutated gene. This is
the reason for calling this the ‘genetic differential effect
problem’. Reverse engineering through modelling at a
high level that takes account of all the relevant lower
level mechanisms enables us to assign quantitatively
the relative roles of the various genes/proteins involved.
Thus, a model of pacemaker activity allows absolute
quantitative assignment of contributions of different
protein transporters to the electric current flows involved
in generating the rhythm. Only a few models within the
Cardiac Physiome Project are already detailed enough to
allow this kind of reverse engineering that succeeds in
connecting down to the genetic level, but it must be a goal
to achieve this at all levels. This is the reason why top-

down analysis, on its own, is insufficient, and is therefore
another justification for the middle-out approach.

Modularity in biological systems

Another major principle is that of modularity. A module
represents a component of a system that can be relatively
cleanly separated from other components. An example is
a model of a time- and voltage-dependent ion channel,
where the model represents kinetically the behaviour of
a large number of identical channel proteins opening
more or less synchronously in the same conditions.
A model for a cellular action potential would be
composed of an assemblage of such modules, each
providing the current flow through a different channel
type for different ions. Each module is linked to the
same environment, but the modules interact with that
environment each in their own way. The key to the
separability of the modules is that they should be relatively
independent of one another, though dependent on their
common environment though the effects of each module’s
behaviour on the environment itself. The separation of
modular elements at the same level in the hierarchy
works best when the changes in the extramodular
environments (concentrations, temperature, pH) do not
change too rapidly, that is, more slowly than do the
individual channel conductances. The reason is that,
when the environmental conditions also change rapidly,
the computational ‘isolation’ of a module becomes less
realistic; the kinetic processes represented must extend
beyond the module. Choosing the boundaries of modules
is important, since a major advantage of modularization is
that a limited number of variables are needed to define the
interface between models relative to the number required
to capture function within the module.

At another level, one might consider the heart,
the liver and the lung, etc., as individual modules
within a functioning organism, while their common
environment (body temperature, blood composition and
blood pressure) is relatively stable (homeostasis in Claude
Bernard’s terms; Bernard, 1865, 1984). At an intermediate
level, a module might be composed to represent a part of
an organ with a different functional state than other parts,
for example, an ischaemic region of myocardium having
compromised metabolism and contractile function. Such
a module, in an acute phase of coronary flow reduction,
might be parametrically identical to the other, normal
regions, but have a reduced production of ATP. At a later
stage, the regional properties might change, stiffening with
increasing collagen deposition, and requiring a different
set of equations, so that there would be a substitution for
the original module.

In the normal state, a module for any particular
region within an organ is inevitably a multiscale
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model, containing elements at the protein (channel
or enzyme) level, of subcellular regions, of interacting
cell groups such as endothelial–smooth muscle–
cardiomyocyte arrangements for blood–tissue exchange
of nutrients, and with the intracellular responses of
each cell type. This level of complexity invites ‘model
reduction’, to save computational time when one has to
account for regional heterogeneity within the organ in
order to characterize its overall behaviour. No organ yet
studied has been found to be homogeneous in all of
its functions. Livers, hearts, lungs and brains all exhibit
internal heterogeneities; for example, blood flows vary
with standard deviations of about 25% of the mean at any
particular point in time within an intact healthy organ,
and are undoubtedly associated with similar variation in
other aspects of their function.

Modules can be envisaged as computational units.
Having such units well defined provides for security in
archiving, in model sharing and for ease of reproducibility,
and for selection in model construction. It also
renders those units more accessible and independently
modifiable. A given module, e.g. for force generation
by muscle contraction, might be cast in several
different forms that represent different degrees of
fidelity, robustness and biophysical detail. Some versions
might be grossly simplified compared with a detailed
and thermodynamically correct biophysical/biochemical
reference model; such simplified versions could then
be used effectively within a multiscale cardiac model
for particular physiological states, for example with the
onset of cardiac dyssynchrony with left bundle branch
block, a situation in which local cardiac contractile work
and cardiac glucose metabolism diminish dramatically
in the early-activated septal region and increase greatly
in the late-activated left ventricular free wall. In this case,
the parameters of the metabolic or contractile modules
change, but the modules are not necessarily replaced. A
principle of modularity is that modules should also be
replaceable to allow an appropriate choice for a particular
purpose, e.g. when infarction and replacement by scar
render the tissue incapable of contracting so that it acts
simply as passive elastic material.

Multiscale models are inherently hierarchical; an organ-
level module comprises a set of tissue-level modules,
and a tissue-level module is composed of a larger set of
cell and structural modules. The modules higher in the
hierarchy (organ, tissue) are necessarily representing more
complex biological functions, so are usually simplified
for computation. The result is a loss of the robustness,
which lies in the adaptability in cell signalling, protein
transcription rates, ATP generation rates, vasomotion, etc.
Let us define robustness as the ratio of a perturbing force
or demand to the degree of disturbance of the system; an
example of strong robustness would be the large change
in cardiac output demanded by the body in going from

rest to exercise divided by the small change in cytosolic
ATP levels in a normal heart. A reduced form module,
lacking the cell’s metabolic regulatory system, would not
be able to respond by increasing its substrate uptake,
metabolic reaction rates and ATP production in a finely
tuned, automated way.

Technically, module-to-module compatibility requires
some standardization in design. In addition to having
a name compatible with an ontology, each needs to be
identified as to domain and to the inputs and outputs that
are needed to communicate with the environment. For
an ion channel, the inputs would be the concentrations
of solutes on either side of the membrane and the
membrane potential. The output would be the current
flux as a function of time. The equations for the
environmental state (inside and outside the cell) would
take the flux and calculate the concentrations and
transmembrane potential. The parameters governing
the channel conductance can remain hidden from the
environment; they are used in computing the conductance
as a function of time, but if their values are not needed
outside the module, they need not be conveyed, so the
information flow is minimized.

Module reduction is presumed desirable; if a governing
set of parameters can be held constant then the behaviour
of the module (its current flux) is all that needs
representation, and the simplest algorithm that does
this is adequate. If this is true for a channel, then
the same statement can be made for the next level
composite module, representing the whole cell excitation–
contraction coupling or the whole region of tissue.
Successive reductions, each capturing the physiological
behaviour of the particular level, can then be made
progressively simpler. We might end up, for example,
with just a varying elastance representation of each of
a set of regions in the heart. While this works in an
unchanging physiological state (Bassingthwaighte, 2008)
and is useful for limited purposes, there is both a risk
and a clear deficiency in the approach. The risk is that
the resulting reduced version may be correct over such a
small range of physiological variation that the model is
incorrect a good fraction of the time, like a stopped clock
being correct twice a day. The deficiency is that the model
cannot adapt to a change in environment or demand
for changes in rate or cardiac output. This difficulty can
be partly offset by not taking the reduction quite so
far, retaining some links to the subcellular level where
adaptations in metabolism, force generation and signal
sensing occur; one can even develop sets of alternative,
partly reduced model forms, substituting in the version
that is most appropriate to the occasion. This begs the
next question, how does one automate or use artificial
intelligence to make these substitutions or to choose to
return to the unreduced, fully detailed model form, as
the model is being run. Such automation is critical to
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the use of models in diagnostic or clinical monitoring
situations.

The criteria for modularity we have outlined above
are essentially descriptive criteria, i.e. the criteria to
be taken into account when designing modules within
computational models. There is a separate question, which
is whether the modules we find necessary or convenient
in computational models correspond to any modularity
displayed by nature. In fact there is no guarantee that
nature is organized in modules that correspond to our
choices in dividing up the task of simulation. As an
example, in the fruit fly, the same gene (the period gene,
per) may be involved in circadian rhythm, in embryonic
development and in modulated wing-beat frequencies
used in communication. Many, perhaps most, genes have
such multiple functionality, sometimes surprising in their
range, like pieces of a child’s construction kit that can be
re-used to build many different models. Thus, while it
may be necessary for us to divide function up according to
what we need mathematically and computationally at the
higher levels, we should remember that natural reality at
the lower levels may more closely resemble tangled forest
undergrowth rather than a neatly laid out park.

This may be one of the reasons for the extensive
genetic buffering to which we have already referred.
The ‘mapping’ of lower level interactions may not easily
correspond to that at higher levels. Many different lower
level networks must be capable of subserving a higher level
function. Yet connecting low-level genetic and protein
network processes to high-level organ function, and the
reverse engineering required to use high-level simulation
to assess the relative contributions of different genes to
overall function (thus solving the ‘genetic differential effect
problem’; see ‘Multiscale analysis’ above) is necessary. It
also poses major challenges that have yet to be resolved in
the Physiome Project, since the mathematics required at
the different levels is usually very different.

A genetic program?

The problem of modularity is related to another deep
question in simulating organisms. The discovery of
the structure of DNA and of the triplet genetic code
almost inevitably led to analogies between organisms and
computers. After all, the code itself can be represented
digitally, and Monod and Jacob, when they introduced
the concept of a genetic program (Monod & Jacob,
1961), specifically noted the analogy with early valve-based
digital computers. The DNA corresponded to the tape of
instructions and data fed into the machine, while the egg
cell corresponded to the machine itself. This analogy also
fuelled the concept of organisms as Turing machines. If
the genetic code really was a complete ‘program of life’,
readable like the tape of a Turing machine, then it might

follow the Church–Turing computability thesis that every
effective computation can be carried out by a Turing
machine (Church, 1936; Turing, 1936).

An organism, however, breaks many of the restrictive
requirements for a Turing machine. First, information in
biological systems is not only digital, it is also analog.
Even though the CGAT code within DNA strings can
be represented as a digital string, expression levels of
individual genes are continuously variable. As we noted
earlier, it is the continuous variation in patterns of gene
expression that accounts for a heart cell being what it
is despite having the same genome as a bone cell. Some
computer scientists have argued that analog processing
is precisely what is required to go beyond the Turing
limit (Siegelmann, 1995). Moreover, gene expression is
a stochastic process, displaying large variations (not just
experimental noise) even within cells from the same
tissue. Such stochasticity is incompatible with determinate
Turing-type programming (Kupiec, 2008, 2009).

Second, DNA is not the sole information required
to ‘program’ the organism. Cellular, tissue, organ and
system architectures are also involved, including in
particular what Cavalier-Smith calls the membranome
(Cavalier-Smith, 2000, 2004). Some of these structures
(mitochondria, chloroplasts) are now thought to have
been incorporated independently of nuclear DNA during
evolution by the process known as endosymbiosis
(Margulis, 1998). The DNA is therefore not the only ‘book
of life’. This organelle and other structural information
can only be said to be digital in the sense in which
we can represent any image (of whatever dimension)
digitally within a certain degree of resolution. But, of
course, the organism does not use such representation.
Finally, there is continuous interaction between genomes
and their environment. This interaction can even include
environmental and behavioural influences on epigenetic
marking of DNA (Weaver et al. 2004, 2007). Organisms
are therefore interaction machines, not Turing machines
(Neuman, 2008).

Nevertheless, the ‘genetic program’ metaphor has had
a powerful effect historically on the way in which we
think about modelling life. The idea that we could
represent organisms in a fully bottom-up manner is
seductive. We suggest that it also underlies the general
approach used by many systems biologists, which is to
neglect the higher level structural and organizational
features. The Physiome Project, in contrast, by including
structural and organizational features, provides a
mathematical framework for incorporating both genetic
and environmental influences on physiological function.
In fact, imaging data is central to many of its successes,
starting with fully anatomical models of cardiac structure.

While it would be a mistake to reduce organisms
to algorithms (in the sense used in the Church–Turing
thesis), there is an important role for mathematical
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analysis. Brute force computation, however impressive
in reproducing biological function and however much
computing capacity it may use, is not in itself an
explanation. Computation needs to be complemented by
mathematical analysis, involving simplifying assumptions
to reduce highly complex models to a tractable form to
which mathematical analysis might be applied. If we are
to unravel the ‘logic of life’ via the Physiome Project, then
such mathematical insights will play an important role.

Mathematical modelling in biology

Before we describe the multiscale modelling framework
being developed by the Physiome Project, it is instructive
to review the areas in which mathematical modelling is
currently being applied to biology and the techniques
being used across the huge range of spatial and temporal
scales required to understand integrative physiological
function from genes to organisms. In order of historical
development and using commonly accepted terminology,
the major areas of application of mathematical modelling
to biology can be summarized as follows.

(1) Evolutionary biology and genetics is a long-
established and sophisticated area of quantitative (i.e.
mathematical and statistical, if not model based) analysis
that deals with mutation and selection, genotype–
phenotype maps, morphogenesis, etc. This field dates
from the early 1900s (Pearson, 1898) and is ripe
for connection to modern computational physiology
as the connection between gene regulatory networks
and engineering models of whole organ phenotype is
established. In fact, the Physiome Project could be one
of the ways in which physiology can reconnect with
evolutionary and developmental biology, as advocated, for
example, by Jared Diamond (1993).
(2) Biophysics and electrophysiology comprise a
historically distinct modelling area that deals with
membrane-bound ion channels, transporters, exchangers
and the membranes themselves. This field dates from
the 1940s work on neural action potentials that
culminated in the Hodgkin–Huxley model (Hodgkin &
Huxley, 1952) and for cardiac cells from the 1960s,
with the series of papers that began with the first
model of a cardiac pacemaker (Noble, 1962). Biological
applications that began with giant squid now include many
mammalian species. Models are based on combinations of
ordinary differential equations, representing membrane
capacitative effects and the voltage-dependent gating
behaviour of ion channels, and algebraic equations
representing biophysical constraints such as charge
conservation and the mass conservation of ion species,
cast in ordinary and partial differential equations (ODEs
and PDEs) and differential algebraic equations (DAEs), the
latter being more problematic to solve (Fábián et al. 2001).

Recent developments include more sophisticated Markov
state models of ion channel gating. This is an advanced
field, thanks to 50 years of close interaction between
modelling and experiments, especially in the neural and
cardiac fields but now also in relation to endothelial cells
(Vargas et al. 1994), epithelial cells (Thomas et al. 2006),
pancreatic β-cells (e.g. Sherman & Rinzel, 1991) and
links with the more general areas of facilitated membrane
transport and cellular metabolism, e.g. in endothelial cells
(Bassingthwaighte et al. 1989) and hepatic cells (Goresky
et al. 1973). It is a field that will benefit greatly from
the development of coarse-grained approximations of
molecular dynamics/quantum mechanics simulations of
ion channel proteins, as the three-dimensional structure
for these becomes available from X-ray diffraction or
nuclear magnetic resonance imaging or, in the future,
predictable from sequence.
(3) Mathematical biology is a more general field dating
from the 1960s, based primarily on ODEs, DAEs and
PDEs (primarily reaction–diffusion systems). Areas of
study include cancer modelling, the cell cycle and pattern
formation in embryogenesis. The link with experiments
is less developed than in the electrophysiology field
and the link to biophysical mechanisms has also not
been a priority, possibly because the practitioners are
mathematicians working in isolation from physiologists,
although this is now beginning to change. There have been
some attempts to link this field to clinical issues, such as the
work on diagnosing ECG patterns with low-dimensional
state space dynamics (Peng et al. 1993).
(4) Computational physiology is the study of structure–
function relations at the levels of cells, tissues and organs
using anatomically and biophysically based models. The
field, which has traditionally had a strong clinical focus,
dates from the 1960s, when it was confined to tissues and
organs and was dominated by engineers studying stress
analyses in bone and the influence of fluid mechanics
on arteriosclerosis. Biomechanics is now a mature
field, particularly in its application to musculo-skeletal
mechanics and to arterial flow mechanics. The multiscale
version of computational physiology is now encompassed
in the Physiome Project and deals both with the interaction
of different types of biophysical equation at the tissue level
(reaction–diffusion equations, large deformation solid
mechanics, fluid mechanics, etc.) and the connection with
models of subcellular function (ion channels, myofilament
mechanics, signal transduction, metabolic pathways, gene
regulation, etc.). The mathematical techniques derive
from engineering physics (conservation laws, continuum
mechanics, finite element methods, etc., coupled to DAEs
at the cell level) and are heavily dependent on high-
performance computation (Hunter et al. 2003). It is a field
that is also increasingly dependent on computer science
(markup languages, ontologies, the Semantic Web, etc.)
in order to cope with the explosion of complexity that
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occurs when tissue modelling is extended down to protein
pathways and associated bioinformatic databases (Hunter
et al. 2008). An important direction for this field is the use
of anatomically based models at the cell level. One example
of how bioengineering approaches are contributing to
our understanding of structure–function relations at the
cell level is the cellular biomechanics area, which has
successfully incorporated molecular mechanisms into a
continuum mechanics framework (Kamm & Mofrad,
2006).
(5) Computational chemistry (as applied to biology)
is the analysis of protein–protein and protein–ligand
interactions using three-dimensional atomic structure.
Quantum mechanics is used to a limited extent, but the
dominant method is molecular dynamics (MD), which
applies F = ma to the atomic masses, where F is the
combination of covalent bonds, van der Waal forces and
electrostatic interactions, m is mass and a is acceleration.
A major challenge for this area is that biological models
require hundreds of thousands of atoms, so it is not
computationally feasible to run them for more than a
few nanoseconds of real time (equivalent to months of
high-performance computer time). This is enough to
compute the permeability of an aquaporin water channel
but is not enough to predict the gating behaviour of
an ion channel. There is some (not enough) work on
coarse-grained approximations of MD. This is needed in
order to derive the ion channel gating, possibly via the
parameters of Markov gating models, from the atomic
structure of ion channels. Hopefully, at some point this
field will also allow us to predict protein folding from
residue sequence.
(6) Network systems biology is the analysis of networks,
primarily gene regulatory networks, signal transduction
pathways and metabolic networks. The field has been
strongly promoted by Hiroaki Kitano (Kitano, 2002) and
Leroy Hood (Facciotti et al. 2004) over the last 10 years
and has benefitted greatly from the development of the
Systems Biology Mark-up Language (SBML) standard
and a rich set of software tools coupled with the SBML-
encoded BioModels Database (www.ebi.ac.uk/biomodels-
main). Yeast is the common biological species studied
by systems biologists, because it is one of the simplest
eukaryotic organisms. The equations are DAEs, and
the network properties of interest are, for example,
modularity, transient/oscillatory responses, state space
attractors and robustness to stochastic perturbation. The
equations include biophysics only to the extent of the
mass balance of chemical species (and usually including
Michaelis–Menten enzyme-catalysed reaction kinetics).
Mathematical analysis is based on state space techniques
(e.g. low dimensional dynamics, bifurcation theory,
etc.), non-linear control theory and Bayesian statistical
methods, as well as a whole range of classical linear algebra

techniques such as singular value decomposition, dynamic
programming, etc.
(7) Systems physiology is the study of integrated
physiological function at the organ system level using DAE
models. The field was initiated with the blood pressure
control work of Guyton in the 1960s (Guyton et al. 1972)
but has stalled. It is ripe for a renaissance based on modern
computational techniques and the use of the CellML
and FieldML encoding standards. For example, one-
dimensional bioengineering models of the cardiovascular
system and the lymphatic system could be used with
cellular models of exocrine signalling and lumped
parameter versions of organs that are linked through
multiscale techniques to computational physiology
models. Similarly, we need to connect the field of
clinical musculo-skeletal biomechanics to computational
physiology models of the three-dimensional structure of
bones, muscles, tendons, ligaments and cartilage.

Physiome Project infrastructure

To address the challenges of multiphysics and multiscale
modelling in computational physiology, the Physiome
Project is developing modelling standards, model
repositories and modelling tools. The key elements of this
modelling infrastructure are CellML and its related model
repositories and tools, and FieldML and its related model
repositories and tools.

CellML (www.cellml.org) is an XML markup language
developed to encode models based on systems of ODEs
and DAEs. CellML deals with the structure of a model and
its mathematical expression (using the MathML standard)
and also contains additional information about the model
in the form of metadata; such things as: (1) bibliographic
information about the journal publication in which the
model is described; (2) annotation of model components
in order to link them to biological terms and concepts
defined by bio-ontologies such as GO (the gene ontology
project); (3) simulation metadata to encode parameters
for use in the numerical solution of the equations;
(4) graphing metadata to specify how the output of the
model should be described; and (5) information about the
curation status of the model (Cooling et al. 2008). Once a
model is encoded in CellML, the mathematical equations
can be automatically rendered in presentation MathML
or can be converted into a low-level computer language
such as C, C++, Fortran, Java or Matlab. A number
of simulation tools are available to run CellML models,
for example, PCEnv (www.cellml.org/tools/pcenv/), COR
(cor.physiol.ox.ac.uk/), JSim (www.physiome.org/jsim/)
and Virtual Cell (www.vcell.org/).

Note that another similar markup language, SBML
(www.sbml.org), has also been developed for models
of gene regulation, protein signalling pathways and
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metabolic networks. This language has widespread
acceptance in the systems biology community, and many
systems biology analysis tools have been developed that
are compatible with SBML. CellML has a broader but
complementary scope in that it deals with biophysically
based models, whereas SBML is focused on biochemical
networks. The CellML and SBML developers frequently
exchange ideas, and models can fairly readily be converted
between the two formats. At some point it may be
advantageous to merge the two languages.

FieldML (www.fieldml.org) is an XML markup
language being developed to work in conjunction
with CellML for encoding spatially varying and time-
varying fields within regions of an organ or tissue.
The language is designed to support the definition and
sharing of models of biological processes by including
information about model structure (how the parts of
a model are organizationally related to one another),
mathematics (such as 2-dimensional and 3-dimensional
partial differential equations describing concentrations or
other variables over the fields) and metadata (additional
information about the model). FieldML will describe
spatially varying quantities such as the geometric
co-ordinates and structure of an anatomical object, or the
variation of a dependent variable field such as temperature
or oxygen concentration over that anatomical region.

These standards are now being applied across a
very wide range of physiological function. The model
repositories for CellML (www.cellml.org/models), Bio-
Models (www.biomodels.org), the National Simulation
Resource Physiome site (www.physiome.org/Models),
and JWSmodels (http://jjj.biochem.sun.ac.za) cover most
aspects of cellular function and many areas of organ system
physiology, albeit to varying degrees, across the body’s
twelve organ systems. The recently established European
Network of Excellence for the Virtual Physiological
Human (VPH; www.vph-noe.eu/index.php) is providing
a major boost to the development of the standards, model
repositories and tools and in particular their clinical
applications.

Another integrative effort was initiated within the US
federal science support system. The National Institute
of General Medical Sciences began issuing requests
for applications in support of integrative biology and
modelling in 1998. In April of 2003, an Interagency
Modeling and Analysis Group (IMAG) was formed,
starting from a working group comprised of program staff
from nine Institutes of the National Institutes of Health
(NIH) and three directorates of the National Science
Foundation (NSF). The IMAG now represents 17 NIH
components, four NSF directorates, two Department
of Energy (DOE) components, five Department of
Defense (DOD) components, the National Aeronautics
and Space Administration (NASA), the United States
Department of Agriculture (USDA) and the United States

Department of Veterans Administration (USDVA) (see
www.nibib.nih.gov/Research/MultiScaleModeling/IMAG).
Since its creation, this group has convened with
monthly meetings at various locations of the IMAG
agency participants, and less frequent meetings of the
investigators from the 30 funded projects, often as
phone or Web presentation/discussions, and annually
as workshops. The ten IMAG investigator-led Working
Groups develop collaborations in technologies and in
science, and share models and technologies.

Clinical applications

The intention of the Physiome Project is to span medical
science and its applications ‘From Genes to Health’,
the title of a 1997 Coldspring Harbor symposium and
the central theme of the 1997 Physiome IUPS Satellite
meeting near St Petersburg. Clinical applications include
clinical image interpretation using positron emission
tomography (PET), magnetic resonance imaging (MRI)
and ultrasound. The interpretation of cardiac PET image
sequences, for example, requires models for blood–
tissue exchange and metabolic processes using PDEs
and ODEs. The result is the production of ‘functional
images’ displaying cardiac three-dimensional maps of
flow, metabolic rates of utilization of oxygen or glucose
or other substrates (e.g. thymidine in tumours), and the
regional densities of receptors in people with arrhythmia
or cardiac failure (Caldwell et al. 1990, 1998; Wilke
et al. 1995). Current work in progress concerns the
development of automated algorithms for image capture,
segmentation and region-of-interest selection, estimation
of the particular function through optimization of model
fits to the data and construction of the three-dimensional
functional image and report.

Where to now?

Over the last 10 years, the IUPS Physiome Project has
focused more on computational physiology, while the
NSR Physiome group has worked on clinical and research
applications and teaching models. These groups and
others have been developing computational infrastructure
for combining models at the cell, tissue, organ and
organ system levels. The Physiome Project is now well
underway, with the markup languages, model repositories
and modelling tools advancing rapidly. But this is only the
very beginning, and there are many challenges ahead. One
challenge is the connection to networks systems biology,
which should be relatively straightforward because the
field has already widely adopted the SBML standard that is
closely related to the Physiome standard, CellML. Another
challenge is to link the Physiome models to clinical
data in a broader way than as described under ‘Clinical
applications’ and to link the models to the standard image
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formats, such as DICOM (http://medical.nema.org/), that
are widely used in clinical imaging devices such as MRI
and computed tomography (CT) scanners. The use of
FieldML should help greatly with this, and discussions
are now underway to include FieldML files within the
public or private header tags of a DICOM file in order
to include the fitted parametric model with the clinical
images used in its creation. A related goal is to use models
for bedside assessment of clinical status, requiring real-
time simulation and data analysis to provide (or suppress)
alarms and to guide therapy (Neal & Bassingthwaighte,
2007). A particular computational problem is to link three-
dimensional finite-element and finite-volume models to
one- or two-dimensional models that can provide the
boundary conditions; this technology is needed in order to
create the setting for the proper physiological behaviour
of the three-dimensional models, since they are far too
computationally intensive to be used for a whole system
at once. Another challenge is to bring the computational
physiology models of the Physiome Project to bear on
the fascinating genotype–phenotype questions that have
occupied the minds of evolutionary biologists for over
100 years. As we noted earlier in this article (see ‘Multiscale
analysis’), high-level phenotype modelling can in principle
solve a major problem in genotype–phenotype relations,
i.e. what we have called the ‘genetic differential effect
problem’.

To date, most of the insights gained into physiological
processes from mathematical models have been derived
from models that deal with one or more physical processes
but at only one spatial scale. Examples are models of
mechanical processes in the heart, gas transport in the
lungs, arterial blood flow dynamics and lipid uptake
into endothelial cells, and stress–strain analysis to assist
with prosthetic implant design in musculo-skeletal joints.
There are a few examples of multiscale analysis, for
example, models of electrical activation waves in the
heart that are linked to ion channel kinetics. There is a
pressing need to be doing much more multiscale analysis.
For example, the most important aspect of joint implant
design is how to avoid the bone remodelling that leads to
implant loosening, and this problem can only be tackled
by linking tissue-level stress analysis to protein-level cell
signalling pathways. A similar requirement exists in the
cardiac mechanics field, where the processes underlying
heart failure are governed by a combination of tissue-level
stress from raised blood pressure (for example) and gene
regulatory processes that alter the protein composition of
the tissue.

Probably the biggest challenge facing the Physiome
Project now, and one that is crucial to the computational
feasibility of multiscale analysis, is that of model reduction.
Automated methods are needed to analyse a complex
model defined at a particular spatial and temporal scale in
order to compute the parameters of a simpler model that

captures the model behaviour relevant to the scales above.
For example, if the three-dimensional atomic structure of
an ion channel is known, a molecular dynamics model
can be formed to compute channel conductance, but one
would like to compute the parameters of a much simpler
(Hodgkin–Huxley or Markov state) model of the current–
voltage channel phenotype appropriate for understanding
its behaviour at the cell level. Similarly, it would be highly
desirable to be able to derive a model of multichannel
cell-level action potential phenotype that accounted for
current load from surrounding cells and could be used
efficiently in larger scale models of myocardial activation
patterns in the whole heart.

The mathematical challenges of deriving automated
model reduction methods are greatly facilitated by the
model encoding standards that have been put in place
over the last 10 years.

Conclusion

We are optimistic that within the next 10 years multiscale
analysis based on automated model reduction will be
a well-honed tool in the hands of physiologists and
bioengineers. Over that time scale, we can expect a
significant number of important applications of the
Cardiac Physiome Project in the healthcare field.

What of the prospects of more fundamental
contributions to the conceptual foundations of biology,
i.e. the questions with which we began this article? It
is inherently hazardous to predict the development of
concepts. If we could, they wouldn’t be predictions.
But we hope that by drawing attention to these issues
and indicating how the Physiome Project may also
contribute to the conceptual foundations of biology,
we will have encouraged adventurous physiologists,
mathematicians, engineers and computer scientists to
tackle those problems.
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